Usage
new_solution_from_result(
name,
visible,
invisible = NA_real_,
loaded = TRUE,
dataset,
settings,
result,
legend,
id = uuid::UUIDgenerate(),
hidden = FALSE,
downloadable = TRUE,
pane = NA_character_
)
Arguments
- name
character
name for new solution.- visible
logical
should the solution be visible on a map?- invisible
numeric
date/time. A time stamp date given to when a loaded layer is first turned invisible. This is used to keep track of loaded invisible layers to offload once the cache threshold has been reached. Defaults toNA_real_
.- loaded
logical
The initial loaded value. This is used to determine if the feature is loaded (or not) or not the map. Defaults toFALSE
.- dataset
Dataset object.
- settings
SolutionSettings object.
- result
Result object.
- legend
ManualLegend object.
- id
character
unique identifier. Defaults to a random identifier (uuid::UUIDgenerate()
).logical
should the solution be hidden from map?- downloadable
logical
can the solution be downloaded?- pane
character
unique map pane identifier. Defaults to a random identifier (uuid::UUIDgenerate()
) concatenated with layer index.
Value
A Solution object.
Examples
# find data file paths
f1 <- system.file(
"extdata", "projects", "sim_raster", "sim_raster_spatial.tif",
package = "wheretowork"
)
f2 <- system.file(
"extdata", "projects", "sim_raster", "sim_raster_attribute.csv.gz",
package = "wheretowork"
)
f3 <- system.file(
"extdata", "projects", "sim_raster", "sim_raster_boundary.csv.gz",
package = "wheretowork"
)
# create new dataset
d <- new_dataset(f1, f2, f3)
# create variables
v1 <- new_variable_from_auto(dataset = d, index = 1)
v2 <- new_variable_from_auto(dataset = d, index = 2)
# create features using variables
f1 <- new_feature(
name = "Possum", variable = v2,
goal = 0.2, status = FALSE, current = 0.5, id = "F1"
)
# create themes using the features
t1 <- new_theme("Species", f1, id = "T1")
# create parameters
p1 <- new_parameter(name = "Spatial clustering")
p2 <- new_parameter(name = "Optimality gap")
# create solution settings using the themes and weight
ss <- new_solution_settings(
themes = list(t1),
weights = list(),
includes = list(),
excludes = list(),
parameters = list(p1, p2)
)
# create solution values
values <- sample(
c(0, 1), length(d$get_planning_unit_indices()), replace = TRUE
)
# create result object
r <- new_result(
values = values,
area = 12,
perimeter = 10,
theme_coverage = calculate_coverage(values, ss$get_theme_data()),
weight_coverage = calculate_coverage(values, ss$get_weight_data()),
include_coverage = calculate_coverage(values, ss$get_include_data()),
exclude_coverage = calculate_coverage(values, ss$get_exclude_data()),
theme_settings = ss$get_theme_settings(),
weight_settings = ss$get_weight_settings(),
include_settings = ss$get_include_settings(),
exclude_settings = ss$get_exclude_settings(),
parameters = ss$parameters
)
# create solution using result object
s <- new_solution_from_result(
name = "solution001",
visible = TRUE,
dataset = d,
settings = ss,
result = r,
legend = new_manual_legend(
values = c(0, 1),
colors = c("#00FFFF00", "#112233FF"),
labels = c("not selected", "selected")
),
hidden = FALSE,
downloadable = TRUE
)